八十五學年度朝陽技術學院轉學招生考試試題

系別：工業管理（工業工程與管理）

本試題共含兩題25題，答對每題得8分，答錯每題倒扣2分。

1. 某一電子系統如下圖所示具有五種零件，每種零件相互獨立且各種零件是好的（可通電的）機率
 如表列：

 ![電路圖](image)

<table>
<thead>
<tr>
<th>零件種類</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>可通電的機率</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

 (1.1) 此電路系統自 p1 至 p2 可通電的機率為 (a) 0.2722 (b) 0.5519 (c) 0.0686
 (d) 0.4246 (e) 以上皆非。

 (1.2) 如果已知此系統電路不通，那麼零件 B 壞掉的機率是多少？ (a) 0.446 (b)0.20
 (c) 0.554 (d) 0.735 (e) 以上皆非。

2. 某廠牌燈泡的廣告宣稱「其燈泡壽命的中位數為 1000 小時」。今隨機選出 10 個燈泡來測試各個
 燈泡的壽命（令其持續地且各自獨立地點亮直到熄滅）。今隨機變數 Zh=10 個燈泡中壽命
 超過 1000 小時的燈泡數目。

 (2.1) 請求 P(Zh=5) = (a) 0.969 (b) 0.031 (c) 0.5 (d) 0.246 (e) 以上皆非。

3. 假如某牌子品質保證其壽命 X 之機率密度函數(pdf)為：f_x(x) =

 \[\begin{align*}
 &0, &\text{if } x < 0, \\
 &{(1 + x)^2}, &\text{if } x \geq 0,
 \end{align*}\]

 (3.1) 此燈泡至少有 2 年壽命的機率為何？(a) 1/3 (b) 2/3 (c) 1/3 (d) 1/3
 (e) 以上皆非。

 (3.2) 若這牌子的某一個體已延續使用 2 年尚未故障，那麼它至少還可再使用 2 年的機率為何？
 (a) 0.67 (b) 0.50 (c) 0.60 (d) 0.33 (e) 以上皆非。

4. 假設有 3 個碗，各有不同數目的紅球與白球如下：
 碗#1：3個白球，7個紅球； 碗#2：5個白球，4個紅球； 碗#3：8個白球，7個紅球。
 若我們作一個實驗如下：擲一對均勻的骰子，若出現的點子總數是大於 4 的奇數，則隨機從碗
 #1 中抽一球，若出現的點子總數是大於 4 的偶數，則隨機從碗#2 中抽一球，若出現點子總
 數是小於等於 4，則自碗#3 中抽一球。

 (4.1) 一個白球被選中的機率為？(a) 0.50 (b) 0.591 (c) 0.567 (d) 1.7
 (e) 以上皆非。

 (4.2) 如果一個紅球被選中，請問此球從碗#3 抽出的機率為？(a) 0.833(b) 0.0333 (c) 0.353
 (d) 0.4 (e) 以上皆非。

5. 從一個大社區中，抽取一包含 41 個住家的簡單隨機樣本來估算去年七月每個住家的平均水
 量。另外，再抽取一包含 61 個住家的的簡單隨機樣本（與前一樣本相互獨立）來估算今年七月
 每個住家的平均水用量。從這兩個樣本所得結果（以千瓦小時表示）如下；
八十五學年度朝陽技術學院轉學招生考試試題

系科：工業管理（工程與管理）

年級：三年級（統計學）

| 樣本 | 類型 | n | x̄ | 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>去年</td>
<td>41</td>
<td>1252</td>
<td>257</td>
</tr>
<tr>
<td>2</td>
<td>今年</td>
<td>61</td>
<td>1330</td>
<td>332</td>
</tr>
</tbody>
</table>

(5.1) \(\sigma_{n-1}\) 的點估計值為 (a) 82.645 (b) 75.00 (c) 61.439 (d) 58.463 (e) 以上皆非。

(5.2) \(\mu_2 - \mu_1\) 的 95%信賴區間為 (a) [-42.42, 198.42] (b) [-36.59, 192.59] (c) [-23.07, 179.07] (d) [-18.17, 174.17] (e) 以上皆非。

(5.3) 若欲檢定“去年與今年之家庭平均用電量是否相同”，當 \(\mu_1 - \mu_2 = 0\) 時 \(\alpha = 0.01\)，則 p-value =

(a) 0.182 (b) 0.204 (c) 0.091 (d) 0.102 (e) 以上皆非。

6. 某汽車輪胎製造廠欲研究下列兩種不同輪胎壓力對於輪胎壽命的影響：(1)標準胎壓；(2)較高胎壓(較高胎壓可增加每公升汽油之行駛公里數)。隨機自生產線中抽取 30 個輪胎，並自其中隨機選出 15 個輪胎用於標準胎壓之測試，而另 15 個輪胎用於較高胎壓之測試。測試所得輪胎壽命資料如下(單位：千公里):

| 樣本 | 輪胎等級 | n | x̄ | 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>標準</td>
<td>14</td>
<td>78</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>較高</td>
<td>15</td>
<td>75</td>
<td>2.0</td>
</tr>
</tbody>
</table>

因第一個樣本中有 1 個輪胎是不良品，故樣本大小(n)變成 14。另外，此兩樣本的母群體是具有相同變異數之常態分佈。

(6.1) \(\sigma^2_{n-1}\) 的點估計值為 (a) 0.449 (b) 0.457 (c) 0.676 (d) 0.944 (e) 以上皆非。

(6.2) 若欲檢定“標準胎壓的平均輪胎壽命"較"較高胎壓的平均輪胎壽命(\(\mu_2\)長)"(即 \(H_0: \mu_1 = \mu_2\) vs. \(H_1: \mu_1 > \mu_2\))，則下列何項檢定公式正確？(a) \((x_1 - x_2) < -1.112\) (b) \(x_1 - x_2 > 1.112\) (c) \((x_1 - x_2) < -1.153\) (d) \((x_1 - x_2) > 1.153\) (e) 以上皆非。

(6.3) 依據(6.2)題之假設(Hypothesis)，p-value 為 (a) \(P(Z > Z^*)\) (b) \(2P(Z > Z^*)\) (c) \(P(t > t^*)\) (d) \(2P(t > t^*)\) (e) 以上皆非。

(6.4) 若欲檢定在標準胎壓下之輪胎壽命標準差(\(\sigma\))是否小於 1.7(即 \(H_0: \sigma \geq 1.7\))，而當 \(\sigma = 1.7\) 時 \(\alpha = 0.05\)，則下列何種情況會拒絕 \(H_0\) ？(a) \(s < 0.77\) (b) \(s < 1.14\) (c) \(s < 1.31\) (d) \(s < 2.23\) (e) 以上皆非。

7. 某公司欲了解新產品被顧客接受的程度，今隨機抽出 n=100 的樣本來檢定各名顧客購買該產品之平均數量是否等於 2 個(即 \(H_0: \mu = 2.0\))。已知各名顧客購買該產品數量之標準差(\(\sigma\))為 1.6 個，又當 \(\mu = 2.0\) 時 \(\alpha = 0.05\)。

(7.1) 假設之下會接受 \(H_0\) ？(a) \(\bar{x} > 2.263\) (b) \(\bar{x} < 1.737\) (c) \(\bar{x} > 2.314\) 或 \(\bar{x} < 1.686\) (d) \(\bar{x} < 1.686\) (e) 以上皆非。

(7.2) 若 \(\mu = 2.15\) 時，根據(7.1)的決策規則，則拒絕機率(Rejection Probability) \(P(H_0; \mu = 2.15)\) 應為 (a) 0.24 (b) 0.1546 (c) 0.1527 (d) 0.76 (e) 以上皆非。

(7.3) 若 \(\mu = 1.9\) 時，根據(7.1)的決策規則，則拒絕機率(Rejection Probability) \(P(H_0; \mu = 1.9)\) 應為 (a) 0.0905 (b) 0.0116 (c) 0.227 (d) 0.0953 (e) 以上皆非。
(7.4) 依題目所述之假設(Hypothesis)，下列敘述何者正確？
(a) \(P\{H_a; \mu=2.15\} = 1 - \beta \) \(P\{H_a; \mu=1.9\} = \alpha \)
(b) \(P\{H_a; \mu=2.15\} = \alpha \), \(P\{H_a; \mu=1.9\} = 1 - \beta \)
(c) \(P\{H_a; \mu=2.15\} = 1 - \beta \), \(P\{H_a; \mu=1.9\} = 1 - \beta \)
(d) \(P\{H_a; \mu=2.15\} = \alpha \), \(P\{H_a; \mu=1.9\} = \alpha \)
(e) 以上皆非。

從過去兩年汽車駕駛人違規記錄的隨機樣本顯示：400個成年人中有16人違規，而300個青年人中有24人違規，\(p_1 \) = 成年人駕車違規比率，\(p_2 \) = 青年人駕車違規比率。

(8.1) 在求算 \(p_1 - p_2 \) 的區間估計時，首先求得 \(\sigma_{p_1-p_2} \) 的估計值為：
(a) 0.0185
(b) 0.000341
(c) 0.0177
(d) 0.0571
(e) 以上皆非。

(8.2) 若欲檢定“在違規比率上，成年人與青年人沒有差異”(即 \(H_0: p_1 - p_2 = 0 \))，須先求得當 \(p_1 = p_2 \) 時 \(\sigma_{p_1-p_2} \) 的估計值為：
(a) 0.0185
(b) 0.000341
(c) 0.0177
(d) 0.0571
(e) 以上皆非。

(8.3) 檢定統計量(Test Statistic)為：
(a) \(t^* = -2.162 \)
(b) \(Z^* = -2.162 \)
(c) \(t^* = -2.26 \)
(d) \(Z^* = -2.26 \)
(e) 以上皆非。

在作飼養鱒魚之研究中，假設已知成熟鱒魚之身長屬於常態分佈。今隨機抽取16條成熟鱒魚(即\(n_1 = 16 \))並量得其身長標準差(Standard Deviation)為 \(s_1 = 4.35 \text{ cm} \)。

(9.1) 母群體變異數(population variance - \(\sigma^2 \))的95%信頼區間為
(a) [2.37, 10.42]
(b) [11.35, 39.10]
(c) [10.33, 45.34]
(d) [2.61, 8.99]
(e) 以上皆非。

(9.2) 若欲檢定 \(H_0: \sigma^2 = 16.32 \) (當 \(\sigma^2 = 16.32 \) 時 \(\alpha \) risk = 0.05)，則檢定統計量(Test Statistic)的抽樣分佈為
(a) \(Z \) 分佈
(b) \(\chi^2 \) 分佈
(c) F 分佈
(d) t 分佈
(e) 以上皆非。

(9.3) 若使用高蛋白飼料飼食鱒魚則可能降低成熟鱒魚長度的變異程度。今有 \(n_2 = 20 \) 的樣本為使用高蛋白飼料飼食之成熟鱒魚，其長度標準差 \(s_2 = 2.76 \)。（此樣本的母群體亦是常態分佈。）今欲檢定飼食高蛋白飼料之成熟鱒魚與傳統飼料之成熟鱒魚之長度變異數小(即 \(H_0: \sigma^1 \geq \sigma^2 \), \(H_1: \sigma^1 < \sigma^2 \))，此時之檢定統計量(Test Statistic)為 \(F^* \)，又當 \(\sigma^1 = \sigma^2 \) 時 \(\alpha = 0.05 \) ，則欲推論出 \(H_0 \) (即拒絕 \(H_0 \)) 的決策規則應為
(a) \(F^* > F(0.95, 15, 19) \)
(b) \(F^* < F(0.05, 15, 19) \)
(c) \(F^* > F(0.05, 15, 19) \)
(d) \(F^* < F(0.025, 15, 19) \) or \(F^* > F(0.975, 15, 19) \)
(e) 以上皆非。

(9.4) 接續(9.3)題，下列敘述何者不正確
(a) \(F^* = 2.48 \)
(b) p-value = \(P\{Z > 2.48\} = 0.066 \)
(c) 因 \(F^* \) 落於拒絕域，故拒絕 \(H_0 \) (i.e., conclude \(H_a \))
(d) \(F(0.05, 15, 19) = 1/F(0.95, 15, 19) \)。
附録

概要

<table>
<thead>
<tr>
<th>F</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.076</td>
<td>1.190</td>
<td>1.363</td>
<td>1.610</td>
<td>1.948</td>
</tr>
<tr>
<td>2</td>
<td>0.875</td>
<td>0.949</td>
<td>1.093</td>
<td>1.282</td>
<td>1.537</td>
<td>1.895</td>
</tr>
<tr>
<td>3</td>
<td>0.764</td>
<td>0.845</td>
<td>1.010</td>
<td>1.198</td>
<td>1.469</td>
<td>1.845</td>
</tr>
<tr>
<td>4</td>
<td>0.667</td>
<td>0.745</td>
<td>0.914</td>
<td>1.089</td>
<td>1.365</td>
<td>1.761</td>
</tr>
<tr>
<td>5</td>
<td>0.586</td>
<td>0.660</td>
<td>0.824</td>
<td>0.962</td>
<td>1.202</td>
<td>1.584</td>
</tr>
</tbody>
</table>

表

```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
```

参考文献

Japanese text in the document is translated into English for clarity. The table and chart are also accurately represented in the natural text format.