八十六學年度朝陽技術學院轉學招生考試試題

系別：工業工程與管理技術系 年級：二年級 科目：微積分

本試卷共三頁，含選擇題(單選) 20 題，每題 10 分答錯不倒扣，共計 200 分

1. \(\lim_{x \to \pi/2} \left(\frac{\pi}{2} - x\right) \tan x = ?\)
 (A) 0 (B) 1 (C) \(\infty\) (D) \(\pi/2\) (E) 以上皆非

2. \(\lim_{x \to 0} (\cos \sqrt{x})^{1/x} = ?\)
 (A) 1 (B) \(e^{-\frac{1}{2}}\) (C) \(e^{\frac{1}{2}}\) (D) 0 (E) 以上皆非

3. 若 \(\lim_{x \to 0} \frac{\sin ax + bx}{x^3} = -\frac{4}{3}\)，則 \(a + b = ?\)
 (A) 0 (B) 2 (C) 4 (D) \(\frac{3}{2}\) (E) 以上皆非

4. 若 \(f(x) = \begin{cases} x + 1 & 1 < x < 3 \\ x^2 + bx + c & |x - 2| \geq 1 \end{cases}\)
 為一連續函數，則 \(b + c = ?\)
 (A) -1 (B) 0 (C) 1 (D) 2 (E) 以上皆非

5. 下列敘述何者為錯誤的：
 (A) 若 \(\lim_{x \to c} f(x) = L\) 且 \(f(c) = L\) 則 \(f\) 在 \(c\) 點連續
 (B) 若 \(\lim_{x \to c} f(x) = L\) 則 \(f(c) = L\)
 (C) 若 \(f\) 在 \(c\) 點是可導的，則 \(f\) 在 \(c\) 點必為連續
 (D) 函數 \(g(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}\)
 在 \(x = 0\) 是可導的
 (E) 以上皆非

6. 若 \(f(x) = \frac{\ln x}{1 + (\ln x)^2}, 0 < x < \infty\)，則 \(f(x)\) 之極大值為：
 (A) \(\frac{2}{5}\) (B) \(\frac{1}{2}\) (C) \(\frac{4}{5}\) (D) \(\frac{3}{10}\) (E) 以上皆非
八十六學年度朝阳技术学院转学招生考试试题

系别：工业工程与管理技术系 年级：二年级 科目：微积分

7. \(F(x, y) = xy - 2^x + 2^y = 0 \)，则 \(\frac{dy}{dx} = \)？
 (A) \(\frac{x - 2^x \ln 2}{y - 2^x \ln 2} \) (B) \(\frac{x - 2^x}{y - 2^x} \) (C) \(\frac{2^x}{2^y} \) (D) \(\frac{x - 2^x}{y + 2^x} \) (E) 以上皆非

8. 若 \(y = \ln(\sin^2 x) \)，则 \(\frac{dy}{dx} = ? \)
 (A) \(\sec^2 x \) (B) \(\frac{2 \cos x}{\sin^2 x} \) (C) \(2 \cot x \) (D) \(\frac{\cos x}{\sin^2 x} \) (E) 以上皆非

9. 设 \(f(x) = x + x^2 + e^x \)，且 \(g(x) = f^{-1}(x) \)，则 \(g'(1) = ? \)
 (A) 0 (B) \(\frac{1}{2} \) (C) \(\frac{1}{4} \) (D) 1 (E) 以上皆非

10. 若 \(f(x) = e^{g(x)} \)，\(g(x) = \int_{1}^{x} \frac{t}{1 + t^2} dt \) 则 \(f'(2) = ? \)
 (A) \(e^{\frac{1}{2}} \) (B) \(\sqrt{5} \) (C) \(1 \) (D) \(e \) (E) 以上皆非

11. 若 R 為曲线 \(y = \sqrt{x} \) 與直線 \(y = 1 \)，\(x = 4 \) 所圍成之區域，則 R 绕 \(y = 1 \) 直线旋转所得之旋转体体积为
 (A) \(\frac{6}{5} \pi \) (B) \(\frac{7}{6} \pi \) (C) \(3 \pi \) (D) \(\frac{5}{4} \pi \) (E) 以上皆非

12. \(\int_{1}^{\frac{1}{2}} \frac{1}{1 + \sin x} dx = ? \)
 (A) \(\frac{1}{2} \) (B) 1 (C) \(-\frac{1}{2} \) (D) 0 (E) 以上皆非

13. \(\int_{0}^{\frac{1}{2}} x \ln x dx = ? \)
 (A) \(-\frac{1}{4} \) (B) \(-\frac{1}{2} \) (C) 1 (D) \(\frac{1}{2} \) (E) 以上皆非
八十六學年度朝陽技術學院轉學招生考試試題

系別：工業工程與管理技術系 年級：二年級 科目：微積分

14. \(\int_0^1 \int_{2x}^{e^x} dy \, dx = ? \)
 \[(A) \frac{1}{4} e^4 \quad (B) \frac{1}{4} (e^4 - 1) \quad (C) 0 \quad (D) 1 \quad (E) \text{以上皆非} \]

15. 設 \(z = x + f(u), \ u = xy \), 則 \(x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = ? \)
 \[(A) 0 \quad (B) x - y \quad (C) x \quad (D) xy \quad (E) \text{以上皆非} \]

16. 函數 \(f(x, y) = 3x^2 - 3xy - y^2 \) 在點 (1, 1) 處，其方向導數之最大值為：
 \[(A) 4 \quad (B) \sqrt{10} \quad (C) \sqrt{34} \quad (D) -1 \quad (E) \text{以上皆非} \]

17. 一微分方程式 \((x^2 + 1) \tan y \frac{dy}{dx} = x \) 之通解為：
 \[(A) y = \frac{C}{\sqrt{x^2 + 1}} \quad (B) y = C \sqrt{x^2 + 1} \quad (C) \cos y = \frac{C}{\sqrt{x^2 + 1}} \quad (D) \cos y = C \sqrt{x^2 + 1} \]
 \[(E) \text{以上皆非} \]

18. 若路徑 \(C \) 是從 (0, 0, 0) 到 (1, 3, -2) 的直線，則 \(\int_C (x + y^2 - 2z) \, ds \) 為：
 \[(A) \frac{11}{2} \sqrt{14} \quad (B) \frac{3}{2} \sqrt{14} \quad (C) \frac{3}{2} \quad (D) \frac{11}{2} \quad (E) \text{以上皆非} \]

19. 下列何者為發散級數？
 \[(A) \sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}} \quad (B) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (C) \sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} \quad (D) \sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln n}{\ln n^2} \quad (E) \text{以上皆非} \]

20. 若 \(f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n} \)，則 \(\int f(x) \, dx \) 之收斂區間為：
 \[(A) (1, 3) \quad (B) (1, 3] \quad (C) [1, 3) \quad (D) [1, 3] \quad (E) \text{以上皆非} \]