1. Please answer the following questions.
(a) If A has n elements and B has m elements, how many different relations are there form A to $A \times B$? Please explain your answer in brief. (5%)
(b) If $|A| = 30$ and the equivalence relation R on A partitions A into three equivalence classes A_1, A_2, and A_3, where $|A_1| = 12$, $|A_2| = 8$, and $|A_3| = 10$, what is $|R|$? Please explain your answer in brief. (10%)

2. Let R be a relation on a set A.
(a) What is the transitive closure of a relation R? (5%)
(b) Let $A = \{a, b, c, d, e, f\}$ and $R = \{(a, a), (a, d), (b, b), (b, d), (c, d), (c, e), (d, a), (e, b), (e, e)\}$ be a relation on A. Please find the matrix of the transitive closure of the relation R. (10%)

3. The Fibonacci number is defined recursively by

 (1) $F_0 = 1$, $F_1 = 1$; and

 (2) $F_n = F_{n-1} + F_{n-2}$ for $n \in \mathbb{Z}^+$ with $n \geq 2$.

 Please prove $F_n \leq (5/3)^n$ for all $n \{0, 1, 2, \ldots\}$ (10%)

4. Please answer the following questions.
(a) Given $G = (V, E)$ is a connected planar simple graph with $|E| > 1$. Prove that $|E| \leq 3|V| - 6$. (10%)
(b) Prove that K_5 is not a planar graph. (10%)

5. There are n straight lines on a plane, each pair of lines must intersect at a point and no three lines meet at a common point. How many regions that was divided by such n lines? Please give the recurrence relation and solve it. (20%)

6. Select three distinct numbers from 101 to 190. How many choice of them satisfy the following condition: the sum of these three numbers will be divided by 3? (10%)

7. How many nonnegative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 34$, where $x_1 \geq 2$, $x_1 \geq 0$, $x_3 > 1$, and $x_4 \geq 5$. (10%)