1. Solve the initial value problems
 (10%) (a) \(y'' + 4y' + 4y = 0 \), \(y(0) = 1 \), \(y'(0) = 1 \).
 (10%) (b) \(y''' - 4y' = 10 \cos x + 5 \sin x \), \(y(0) = 3 \), \(y'(0) = -2 \), \(y''(0) = -1 \).

2. (15%) Find the inverse Laplace transform of the function \(\ln \left(1 + \frac{w^2}{s^2}\right) \).

3. (5%) Find all vectors \(\mathbf{v} = [v_1, v_2, v_3]^T \) orthogonal to \(\mathbf{a} = [1, 2, 0]^T \).

4. (10%) Using gradients, find a unit normal vector \(\mathbf{n} \) of the cone of revolution \(z^2 = 4(x^2 + y^2) \) at the point \(P: (1, 0, 2) \).

5. (15%) Find the Fourier transform of \(e^{-ax^2} \), where \(a > 0 \).

6. (10%) Represent \((2.6 + 0.38i)^2 \) in polar form, with the principal argument.

7. (10%) If \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is even (i.e., \(f(-z) = f(z) \)), show that \(a_n = 0 \) for odd \(n \).

8. (15%) Find a basis of eigenvectors and diagonalize for the matrix \(\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \).