1. (20%) Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix}$, find $A^{10} = ?$

2. (10%) Use Gram-Schmidt process to find three orthonormal vectors from

$$s_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad s_2 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \quad s_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

3. (10%) Let T be the matrix transformation from \mathbb{R}^2 to \mathbb{R}^3 whose associated matrix is:

$$L = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Let

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

and $V = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}$ be ordered bases for \mathbb{R}^2 and \mathbb{R}^3, respectively. Determine the matrix representation of T relative to S and V.

4. (10%) Find the general solution of the equation

$$x^3 y'' + xy' - y = x \ln(x)$$
5. (20%) Apply the Laplace Transform

\[F(s) = \int_0^\infty e^{-st} f(t) \, dt \]

(A) Find the transform of the equation \(f(t) = t \cdot \cos \omega t \).

(B) Using the transform, solve the Differential Equation

\[y'' + y = 0 \]

with the initial \(y(0) = y'(0) = 1 \).

6. (10%) If \(f(x) \) and \(g(x) \) have period \(p \), show that \(h = af + bg \) (\(a, b \) constant) has the period \(p \).

7. (10%) Find the determinate of matrix \(A \), where

\[
A = \begin{bmatrix}
1 & 0 & 3 & 7 \\
4 & 2 & 0 & 1 \\
7 & 7 & 3 & 0 \\
5 & 0 & 6 & 8
\end{bmatrix}
\]

8. (10%) Please integrate the following function.

\[\int z^k \, dz \]